上海水磨是不是都关门了

50 PERSONNEL CHANGES Who Joined Who Left Wilmington Public Schools Over The Summer

first_imgWILMINGTON, MA — The Wilmington School Committee recently received its August personnel report, recapping the changes to the school system’s staff over the summer recess.“Even within the last 24 hours, we’re contending with very last minute resignations. I doubt we’re unique compared to other districts. There’s lot of volatility right now,” noted School Superintendent Dr. Glenn Brand.Andrea Stern Armstrong, the district’s Director of Human Resources, told Committee members she is working diligently to get all positions filled as soon as possible. Her biggest priority is filling the six open educational assistant positions.In response to a question from School Committee member David Ragsdale, Armstrong believes there’s a variety of reasons why staff members are leaving the district, including salary, career advancement, family, and relocation. She noted many Educational Assistants are currently in school studying to become teachers. Once they graduate, they’ll pursue teacher positions and eventually resign as educational assistants.Below is a recap of changes documented by Armstrong. This information was provided on August 28, 2019, so many of the vacancies are likely now filled.Wilmington Middle School  SPED Inclusion Teacher Jennifer Grandbois was hired to a new position.SPED Strides Program Teacher Hannah Laviolette resigned and was replaced by Lauren Kulakowski.Tech Ed/STEM Teacher Dennis Fitzgerald resigned and was replaced by Charles Ronchetti.SPED Inclusion Teacher Kristine Benning resigned and was replaced by Neil MacDonald.STEM Teacher Kevin Welch was transferred to the Shawsheen to become its 1-year Interim Assistant Principal. Welch was replaced by Edward Kaizer. Welch’s interim principalship ended with the hiring of Alexander Phillips.LPN/Ed Assistant Amanda Madigan resigned and was replaced by Carissa Carrier.SPED Teacher Susan Mann retired and was replaced by Justine Palermo.Reading Specialist Marianne Oshiro retired and was replaced by Kristen Romano.Reading Teacher Kristen Romano became a Reading Specialist at the Middle School. She was replaced by Amy Glavin.Math Strategies Teacher Bethany Lloyd resigned her position, which is still open.Woburn Street Elementary School  Ed Assistant Erin Brugger resigned and was replaced by Kara Pereira.Principal Jeff Strasnick retired and was replaced by Suzanne Sullivan.Admin Assistant Justine Palermo transfered to the Middle School and was replaced by Karen O’Reilly.Admin Assistant Karen O’Reilly resigned her position, which is still open.Ed Assistant Conor Bailey resigned his position, which is still open.Shared Ed Assistant Taylor Perella resigned her position, which is still open.Ed Assistant Ryan MacIver resigned his position, which is still open.Assistant Frank Ferriero retired and was replaced by Shelia Burke.Boutwell Early Childhood CenterKindergarten Teacher Sharon Tildsley retired and was replaced by Arlene Poeck.District LevelSchool Psychologist Andrew Paschal resigned and was replaced by Jacqueline Dami.Physical Therapist Eileen Lee retired and was replaced by Kelly Ayers.Kenneth Lord became Director of Technology, which was previously unfilled.SPL Assistant Deryn Blaney resigned his position, which is still open.North Intermediate SchoolReading Specialist Nikki Sutton is taking a leave of absence and was replaced by Jennifer Rizzari.Ed Assistant Nicole McKenna resigned and was replaced by Joanne Vultaggio.Shawsheen Elementary SchoolSPED Teacher Ryan Cunningham resigned and was replaced by Mary Vardner.Ed Assistant for Pathways Eric Lozzi resigned his position, which is still open.Admin Assistant Karen O’Reilly was transferred and was replaced by Jennifer Sirois.Ed Assistant Joanne Vultaggio was transferred and replaced by Elizabeth Pellegrino.Ed Assistant Susan Pelletier was transferred and her position was not filled.Ed Assistant Mary Moran resigned and was replaced by Ashley Jones.Ed Assistant Meaghan Ashley resigned and was replaced by McKayla Hersom.Assistant Principal Erin Burke resigned and was replaced by Kevin Welch.Student Support ServicesAdmin Assistant Margaret Magee retired and was replaced by Lynn Neville & Kathy Fuller in a reshuffling. Neville and Fuller were replaced by Kristina Barbacano.Leanne Ebert became Coordinator of Special Education, a new position.West Intermediate SchoolGrade 4 Teacher Shelia Burke became Asst. Principal at the Woburn Street and was replaced by Renee Descheme.SPED Teacher Margaret Bolt resigned and her position remains open.School Psychologist Bethany Dionne and was replaced by Meghan St. Denis.Ed Assistant for Stepping Stones Avery Woodbury resigned and was replaced by Adrianna Kippenberger.Wilmington High SchoolStrides ABA Teacher Danielle France resigned and was replaced by Ashely Rokobauer.Athletics Director Tim Alberts resigned and was replaced by Ed Harrison.Physical Education & Health Teacher Lois Nardo retired and was replaced by Savannah Dupeyrat.Guidance Admin Assistant Vanessa French retired and was replaced by Sharon Eldered.Guidance Counselor Timothy McCarthy resigned and was replaced by Ashley LeBlanc.Math Teacher Caitlin Enright resigned and was replaced by Jessica Craft.Athletic Department Admin Assistant Cheryl Tavares resigned and was replaced by Heather Paonessa.Mollie Dickerson became the Guidance CTL. She had been serving in the position on an interim basis.Wildwood Early Childhood Center Ed Assistant Conor Bailey transfered from Wildwood to Woburn StreetEd Assistant Emily Weidlin resigned her position, which is still open.Kindergarten Teacher Marion Valeri retired and was replaced by Isabella Gallant. Like Wilmington Apple on Facebook. Follow Wilmington Apple on Twitter. Follow Wilmington Apple on Instagram. Subscribe to Wilmington Apple’s daily email newsletter HERE. Got a comment, question, photo, press release, or news tip? Email wilmingtonapple@gmail.com. Share this:TwitterFacebookLike this:Like Loading… RelatedSCHOOL COMMITTEE To Discuss New School Year, New Administrators & New Goals At August 28 MeetingIn “Education”NEW ROLES FOR 3 FAMILIAR EDUCATORS: Shelia Burke, Leanne Ebert & Kevin Welch Named To Leadership PositionsIn “Education”Superintendent Brand Announces His TEN Goals For The 2019-2020 School YearIn “Education”last_img read more

Solving mazes with singlemolecule DNA navigators

first_imgImplementing the single-molecule DNA navigator. a) Schematic illustration of the PSEC system. An acyclic connected graph (i.e. a tree) is constructed on a rectangular DNA origami substrate of 100 x 70 nm^2. T1 and T2 are two types of fuels driving the PSEC on the tree. Initiator I was used to trigger the initiation of the PSEC from the entrance vertex ENT. b) propagation mechanism of the PSEC system. Initiator I recognizes and opens the T1ent hairpin at vertex ENT. The opened hairpin then captures and opens a T2 hairpin from the environment to start the cascade. c) A straight line paved by PSEC and visualized with DNA-PAINT. d) Four paved digits of “2017” imaged using atomic force microscopy (AFM). The T1 hairpins at the corner points were modified to prevent unwanted spans. The arrows indicate the direction of propagation. Credit: Nature Materials, doi: 10.1038/s41563-018-0205-3. © 2018 Science X Network Tying the knot: New DNA nanostructures , Science In the present study by Chao et al, the same basic principle of the HCR reaction scheme was used in a different computational context to develop a single-molecule DNA-navigator system. The platform explored all possible paths through a tree graph designed on an origami structure as a simply connected maze without cyclic paths. Such DNA origami structures are information-bearing nanostructures by nature with well-defined nanoscale geometry. The maze could be explored by proximal strand exchange cascade (PSEC) based on hybridization chain reactions. The researchers demonstrated that a system with a large number of single-molecule DNA navigators could collectively conduct parallel depth-first search (PDFS) on the tree to efficiently perform maze solving within 2-D origami. Initially the researchers conducted studies to test the PSEC design. Journal information: Nature Materials Citation: Solving mazes with single-molecule DNA navigators (2018, November 16) retrieved 18 August 2019 from https://phys.org/news/2018-11-mazes-single-molecule-dna.html More information: Jie Chao et al. Solving mazes with single-molecule DNA navigators, Nature Materials (2018). DOI: 10.1038/s41563-018-0205-3Renjun Pei et al. Training a molecular automaton to play a game, Nature Nanotechnology (2010). DOI: 10.1038/nnano.2010.194S. M. Douglas et al. A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads, Science (2012). DOI: 10.1126/science.1214081 Kinetics of the process were investigated at the single-molecule level in the study using time-resolved total internal reflection fluorescence microscopy (TIRF) in a setup with a prescribed starting point (P0) and five intermediate steps (P1-P5). Fluorescence in the setup was quenched using fluorescence resonance energy transfer (FRET), and the cascade was observed in real time by recording fluorescence signals continuously. The average speed of propagation was recorded to be 2.46 nm per minute, propagation across the straight line (54.4 nm) took approximately 22 minutes. The scientists then constructed the main model maze with 10 vertices that included an entrance vertex A and an exit vertex J, three junctions (B, D, E) an intermediate vertex (I) and four dead ends (C, F, G, H). Each path of the maze that was equivalent to a tree with 10 vertices was investigated using DNA investigators starting at root A. The PSEC reactions produced a mixture of various paths on the maze, confirmed with AFM. Each individual PSEC could progress on one of the five possible paths. Statistical analysis of the length distribution showed that the measured paths coincided well with the values predicted. To prevent the navigators from propagating through a wrong path with dead ends, the scientists designed a streptavidin-biotin tag-based method to selectively eliminate inaccurate path navigation. Only the correct path (PABDIJ) was followed in the maze therefore. The computational context used in the study allowed exploration of paths through tree graphs defined on the origami. The autonomous path explored by the DNA navigators proceeded unidirectionally and irreversibly, turning at junctions and corners on the origami platform as they were designed to. The design enabled parallel depth first search (PDFS) allowing each DNA navigator to individually explore any one of the paths through the given graph at a defined speed, greater than that previously achieved. The main advantage of the described biomolecular computer schemes in comparison to conventional electronic computing is they can be interfaced directly with biologically relevant processes. As a result, the scientists envision translational biomedical sensing and decision-making platforms with DNA origami and single-molecule diagnostics using decision trees. Future applications will also include simple sensors or those coupled to a molecular actuator to trigger downstream molecular cascades. , Nature Nanotechnology Pathfinding operations with DNA navigators make use of a localized strand exchange cascade process initiated at a unique trigger site on the origami platform. Automatic progression along paths is enabled by DNA hairpins containing a universal traversal sequence. By design, each single-molecule navigator can autonomously explore any of the possible paths through a 10-vertex rooted tree constructed in the study. The mazes were equivalent to a tree with an entrance at the root and an exit through one of the leaves. The study conducted by Jie Chao and co-workers resulted in exploring all paths taken by the DNA navigators to extract a specific solution path that connected a given pair of start and end vertices in the maze. As a result, the solution path was laid plainly on the origami platform and illustrated using single-molecule imaging. The approach is now published in Nature Materials, detailing the realization of molecular materials with embedded biomolecular computational functions to operate at the level of the single-molecule with potential to engineer intelligent nanorobots for future applications in industry and medicine.Sophisticated molecular tools were used in the past to create molecular machines that convert chemical, photonic or electric energy into rotary or linear movements at the nanoscale. For instance, Brownian motion at the nanoscale can be controllably converted into directed movements within DNA-based nanomachines using DNA hybridization reactions. Such DNA-based machines operate autonomously by following an embedded ‘molecular program’ pre-designed as a cascade reaction manually triggered via an external stimulus for each step of the operation. The focus of the field has progressively shifted to actualize DNA-based logic circuits using aptamers and DNAzymes to design molecular logic gates. For example, in 2006, Stojanovic and co-workers integrated more than 100 DNA logic gates to engineer an automation calledMAYA-II to play a game of Tic-Tac-Toe. Preceding studies demonstrated an enzyme free computing system based on hybridization chain reactions (HCR) to create logic-gates and logic circuits for more robust and efficient performance than the original systems. Single-molecule DNA navigators for maze-solving. a) Schematic illustration of magnetic bead-based selection. Exit vertex J is labelled with biotin to enable differentiation between the correct and wrong paths. Only if the PSEC reaches the correct exit J, would the biotin-modified T1exit-B strand be released. All wrong paths could be captured and removed by the Streptavidin-modified magmatic beads therefore. b) Details of the release of biotin modification at the exit J by the PSEC. c) AFM characterization of the correct solution after selection. The remaining structures all showed the correct solution path PABDIJ. d) Single-molecule and class-averaged DNA-PAINT characterization of the correct solution after selection. Credit: Nature Materials, doi: 10.1038/s41563-018-0205-3. Explore further The proximal strand exchange cascade (PSEC) system (working principle of the DNA navigator) was facilitated on a rectangular origami substrate made of three components, which included the physical implementation of a tree graph, full strands and an initiator strand. Vacant areas without staple extensions corresponded to walls in the maze, preventing propagation of the strand exchange cascade. The entrance and exit were defined and denoted as ENT and EXIT respectively. In the second component, two types of DNA hairpins, T1 and T2, were used as fuels to drive the PSEC on the tree graph. The two hairpins coexisted metastably in solution to hybridize and fuel the PSEC process with free energy . By design, information only propagated through the network in the presence of an initiator (Initiator I). Upon addition of initiator I, PSEC was conducted and observed using atomic force microscopy (AFM). To visualize an established formation, the scientists enabled DNA-navigator-based formation of the number 2017 as a proof-of-principle. Another technique known as DNA-PAINT was employed as a single-molecule, super-resolution imaging technique to reveal molecular features at the nanoscale to further substantiate the PSEC-based path paving process. The on-origami PSEC was highly specific, without intra- or inter-origami crosstalk. The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have engineered a DNA navigator system that can perform single-molecule, parallel, depth-first search operations on a two-dimensional origami platform. Single-molecule characterization of PSEC kinetics. a) A straight line in the middle of the DNA origami was used as the test bed. Vertex P0 is the starting point and vertices P1-P5 are intermediate points. b) Details of the design of six parallel tests to measure the kinetics with time-resolved TIRF. T2 labelled with BHQ2 was used to quench T1 labelled with Cy3, assembling a kinetic profile at each step. The illustrated example shows the mechanism of quenching. c) Example TIRF images show the fluorescence changing with time across the six parallel tests from P0 to P5. d) Typical single-molecule fluorescence traces used to monitor quenching events occurring at vertices P0 to P5. e) Scatter plots showing statistical analysis of the length distribution per path. Credit: Nature Materials, doi: 10.1038/s41563-018-0205-3. This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. The PSEC-driven graph traversal on a maze. a) A maze design with 10 vertices. Arrows indicate the entrance vertex A and exit vertex J. b) The maze is equivalent to a rooted tree with 10 vertices. The entrance vertex A corresponds to the root of the tree. c) An AFM image showed the result of a transversal experiment generating all possible paths. In this DNA computing implementation of a PDFS algorithm, a vast number of PSEC events simultaneously occurred to realize the graph traversal on the maze. PSEC ending at the exit or deadends were highlighted in red circles. Invalid structures were highlighted with white circles. d) Typical paths found in the mixture seen from left to right. Only PABDIJ was the correct solution to the maze. e) Scatter plots showing the statistical analysis of the length distribution for each path. Credit: Nature Materials, doi: 10.1038/s41563-018-0205-3.last_img read more

7 Irish experiences with Contiki for clients who have covered the basics

first_imgTags: Contiki, Ireland 7 Irish experiences with Contiki, for clients who have covered the basics Share Monday, March 18, 2019 Travelweek Group center_img TORONTO — From a hearty Irish stew, to adrenaline-inducing cliffs and ancient castles, Ireland has a lot to offer. But once you’ve checked off all the classic Irish sites, what’s left for your clients to do if they’re looking to make a return trip?Travelweek caught up with Dave Marathakis, National Sales Manager for Contiki, to find out his top seven experiences – all ones you’re less likely to read about in the Irish guidebooks.Check out Dún Aonghasa on the Aran IslandsThis prehistoric hillfort is not only high up on adventurers’ bucket lists, but it’s literally high up, built on a 100-metre cliff over the Atlantic Ocean. Originally constructed over 3,000 years ago, it’s still very much a mystery. Marathakis explains, “While historians are still trying to figure out the origins, what we do know is that clients absolutely love visiting this mysterious site. They have the option of experiencing Dún Aonghasa during a ferry ride to Aran Islands. It’s definitely the hidden gem in a sea of Irish experiences.”Sample Jameson Whiskey in CorkThe battle between Scottish whisky and Irish whiskey is well documented. But why choose? Clients can sample both on Contiki’s 13-day Ireland and Scotland trip, with a visit to Jameson’s distillery in Ireland. For over 200 years, Jameson has been making drams of this liquid gold and clients have the chance to not only learn more about whiskey but enjoy it as well. “Most people think of Guinness when they talk about Ireland, but what they don’t realize is that the Emerald Isle is also the king of whiskey makers!” adds Marathakis.Wander through history at the Titanic Belfast museumNamed the World’s Leading Tourist Attraction in 2016, no trip to Belfast is complete without a visit to the Titanic Belfast museum, which artfully tells the story of RMS Titanic, from its conception to its famous maiden voyage and tragic end on April 14, 1912. It is the most extensive museum dedicated to the ship, and young travellers have the opportunity to score entry when visiting Belfast on Contiki’s year-round eight-day Ireland adventure.More news:  Sunwing ready to launch Mazatlán-Quebec City direct this winterVisit the oldest library in IrelandBook enthusiasts wandering through Dublin will find no shortage of geeking out opportunities at The Book of Kells exhibition at Trinity College Library. Considered Ireland’s oldest university, Trinity College dates back to 1592 with an alma mater including the likes of Oscar Wilde and Bram Stoker (author of Dracula). Marathakis adds: “The cobblestone halls of Trinity College will lead your clients to over 200,000 books and manuscripts, including the world-famous four Gospels of the life of Jesus Christ.” It’s the perfect place for history lovers to spend an afternoon (or two).Walk along the Cliffs of MoherCalling all adventurers – the Cliffs of Moher aren’t for the faint of heart. Reaching heights of 214 metres above the Atlantic Ocean and stretching for 8 kilometres along the coast, it’s a jaw-dropping must-do. “If heights aren’t your client’s cup of English Breakfast tea, they’re best to sit this one out. Contiki takes its travellers to this breathtaking natural wonder on our Irish adventures, including the 17-day Great Britain and Ireland trek. Trust me when I say they’re just as stunning as they are daunting!” says Marathakis.Explore Viking artefacts in DublinHiding under modern Ireland is a rich history with many tall Viking tales. Although maybe they’re not that tall at all when clients explore all the ancient relics left over from the raiding heyday. They can find museums showing off the old school wares everywhere, but Dublin probably has the most treasures with a visit to Dublin Castle which holds artefacts of the Irish Vikings.More news:  Experience Ireland: the Emerald Isle’s mythical talesTake a walking tour of Derry / LondonderryWhile most travellers visit Northern Ireland for the Giant’s Causeway or Belfast, many end up skipping Derry / Londonderry. Big mistake, says Marathakis. “Derry / Londonderry is the only completely walled city in Ireland, with stunning 20-foot walls dating back to the 17th century. We love taking our travellers here for a walking tour to truly soak up the history.” And clients who love a scare will be interested to know that the city hosts one of the biggest Halloween celebrations in all of Europe.From now until March 31 Contiki is offering $250 off its most popular trips that visit Ireland for a limited time as part of its ‘Contiki SEVEN’ campaign.Trips include Great Britain and Ireland and Scotland and Ireland.Agents can also turn every Contiki booking into a cash incentive. With the launch of its revamped Contiki Rewards program for 2019, agents can earn $250 for every five passengers booked on any Contiki trips that are over seven days.For every additional five passengers booked, agents receive another $250 in cash.Fill out the ‘2019 Cash Incentive’ form, which can be downloaded at contiki.com/agents, and email it to sales@contiki.ca.Agents can also enter to win prize packs throughout the campaign on the Contiki Canada Travel Agents Facebook page, plus both agents and clients are eligible to enter the national grand prize giveaway for a trip plus airfare. Posted by << Previous PostNext Post >>last_img read more